4 research outputs found

    FULLY AUTONOMOUS SELF-POWERED INTELLIGENT WIRELESS SENSOR FOR REAL-TIME TRAFFIC SURVEILLANCE IN SMART CITIES

    Get PDF
    Reliable, real-time traffic surveillance is an integral and crucial function of the 21st century intelligent transportation systems (ITS) network. This technology facilitates instantaneous decision-making, improves roadway efficiency, and maximizes existing transportation infrastructure capacity, making transportation systems safe, efficient, and more reliable. Given the rapidly approaching era of smart cities, the work detailed in this dissertation is timely in that it reports on the design, development, and implementation of a novel, fully-autonomous, self-powered intelligent wireless sensor for real-time traffic surveillance. Multi-disciplinary, innovative integration of state-of-the-art, ultra-low-power embedded systems, smart physical sensors, and the wireless sensor network—powered by intelligent algorithms—are the basis of the developed Intelligent Vehicle Counting and Classification Sensor (iVCCS) platform. The sensor combines an energy-harvesting subsystem to extract energy from multiple sources and enable sensor node self-powering aimed at potentially indefinite life. A wireless power receiver was also integrated to remotely charge the sensor’s primary battery. Reliable and computationally efficient intelligent algorithms for vehicle detection, speed and length estimation, vehicle classification, vehicle re-identification, travel-time estimation, time-synchronization, and drift compensation were fully developed, integrated, and evaluated. Several length-based vehicle classification schemes particular to the state of Oklahoma were developed, implemented, and evaluated using machine learning algorithms and probabilistic modeling of vehicle magnetic length. A feature extraction employing different techniques was developed to determine suitable and efficient features for magnetic signature-based vehicle re-identification. Additionally, two vehicle re-identification models based on matching vehicle magnetic signature from a single magnetometer were developed. Comprehensive system evaluation and extensive data analyses were performed to fine-tune and validate the sensor, ensuring reliable and robust operation. Several field studies were conducted under various scenarios and traffic conditions on a number of highways and urban roads and resulted in 99.98% detection accuracy, 97.4782% speed estimation accuracy, and 97.6951% classification rate when binning vehicles into four groups based on their magnetic length. Threshold-based, re-identification results revealed 65.25%~100% identification rate for a window of 25~500 vehicles. Voting-based, re-identification evaluation resulted in 90~100% identification rate for a window of 25~500 vehicles. The developed platform is portable and cost-effective. A single sensor node costs only $30 and can be installed for short-term use (e.g., work zone safety, traffic flow studies, roadway and bridge design, traffic management in atypical situations), as well as long-term use (e.g., collision avoidance at intersections, traffic monitoring) on highways, roadways, or roadside surfaces. The power consumption assessment showed that the sensor is operational for several years. The iVCCS platform is expected to significantly supplement other data collection methods used for traffic monitoring throughout the United States. The technology is poised to play a vital role in tomorrow’s smart cities

    Constructivist Multi-Access Lab Approach in Teaching FPGA Systems Design with LabVIEW

    Get PDF
    Embedded systems play vital role in modern applications [1]. They can be found in autos, washing machines, electrical appliances and even in toys. FPGAs are the most recent computing technology that is used in embedded systems. There is an increasing demand on FPGA based embedded systems, in particular, for applications that require rapid time responses. Engineering education curricula needs to respond to the increasing industrial demand of using FPGAs by introducing new syllabus for teaching and learning this subject. This paper describes the development of new course material for teaching FPGA-based embedded systems design by using ‘G’ Programming Language of LabVIEW. A general overview of FPGA role in engineering education is provided. A survey of available Hardware Programming Languages for FPGAs is presented. A survey about LabVIEW utilization in engineering education is investigated; this is followed by a motivation section of why to use LabVIEW graphical programming in teaching and its capabilities. Then, a section of choosing a suitable kit for the course is laid down. Later, constructivist closed-loop model the FPGA course has been proposed in accordance with [2- 4; 80,86,89,92]. The paper is proposing a pedagogical framework for FPGA teaching; pedagogical evaluation will be conducted in future studies. The complete study has been done at the Faculty of Electrical and Electronic Engineering, Aleppo University

    DEVELOPMENT OF INEXPENSIVE VEHICLE SENSOR NODE SYSTEM FOR VOLUME, TURN MOVEMENT AND COLLISION AVOIDANCE (FHWA-OK-16-06 2252)

    No full text
    Real-time traffic surveillance is essential in today’s intelligent transportation systems and will surely play a vital role in tomorrow’s smart cities. The work detailed in this paper reports on the development and implementation of a novel smart wireless sensor for traffic monitoring. Reliable and computationally efficient algorithms for vehicle detection, speed and length estimation, classification, and time-synchronization were fully developed, integrated, and evaluated. Comprehensive system evaluation and extensive data analysis were performed to tune and validate the system for a reliable and robust operation. Several field studies conducted on highway and urban roads for different scenarios and under various traffic conditions resulted in 99.98% detection accuracy, 97.11% speed estimation accuracy, and 97% length-based vehicle classification accuracy. The developed system is portable, reliable, and cost-effective. The system can also be used for short-term or long-term installment on surface of highway, roadway, and roadside. Implementation cost of a single node including enclosure is US $40.Final report, October 2012-December 2013N
    corecore